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Image Upsampling via Imposed Edge Statistics

Raanan Fattal∗

University of California, Berkeley

Abstract

In this paper we propose a new method for upsampling images
which is capable of generating sharp edges with reduced input-
resolution grid-related artifacts. The method is based on a statisti-
cal edge dependency relating certain edge features of two different
resolutions, which is generically exhibited by real-world images.
While other solutions assume some form of smoothness, we rely on
this distinctive edge dependency as our prior knowledge in order to
increase image resolution. In addition to this relation we require
that intensities are conserved; the output image must be identical
to the input image when downsampled to the original resolution.
Altogether the method consists of solving a constrained optimiza-
tion problem, attempting to impose the correct edge relation and
conserve local intensities with respect to the low-resolution input
image. Results demonstrate the visual importance of having such
edge features properly matched, and the method’s capability to pro-
duce images in which sharp edges are successfully reconstructed.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.4.3 [Image Processing and
Computer Vision]: Enhancement—Sharpening and deblurring

Keywords: image interpolation, image enhancement, Markov ran-
dom field image modeling, super-resolution

1 Introduction

Image resizing or resampling is one of the most elementary image
operation, supported by virtually all image editing software, and is
used for many purposes. In the course of desktop publishing, raw
images are resized, on a regular basis, to new dimensions in order
to fit designated areas in documents. Low-resolution video frames
from surveillance cameras are enlarged to ease the inspection of
their contents. As well as the recent popularity of HDTVs brings
out the need for resolution enhancement of NTSC and PAL video
recordings. In 3D graphics, these interpolations are used to map
image textures onto objects’ surface. While satisfactory downsam-
pled images are obtained by a proper linear pre-filtering, this is not
the case for upsampling. Upsampled images usually lack small-
scale texture-related features and moreover, sharp edges become
blurry, original pixel grids remain noticeable (often called the ‘jag-
gies’ artifact), and in some cases ringing appears in the vicinity of
sudden transitions in intensity. Formally speaking, upsampling in-
volves determining far more pixel intensities than the number given.
This makes upsampling a particulary challenging problem and one
that is highly sensitive to the additional assumptions or informa-
tion needed to establish its well-posedness. Indeed, different up-
sampling techniques correspond to different assumptions about the
nature of the upsampled image. For example, the assumption that
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Figure 1: Sharp upsampled image resulting from a low-resolution
image plus edge statistics (the right ring is an actual result from the
input on the left).

images are smooth enough to be adequately approximated by poly-
nomials yields analytic polynomial-interpolation formulas. On the
other hand, assuming that images are limited in band yields a differ-
ent family of low-pass filters. For most images, these assumptions
are highly inaccurate, and as a consequence these methods produce
images which suffer from excessive blurriness and the other visual
artifacts mentioned earlier. We extend this discussion to more so-
phisticated methods in the next section.

In this paper we point out a unique dependency between image
derivatives at different resolutions, as exhibited by real-world im-
ages; pixel differences at higher resolutions depend on their dis-
tance from an edge, the spatial distribution of that edge and the total
intensity jump across it, all estimated in low-resolution. Using this
non-trivial relation, we have devised a new method for upsampling
images. The solution consists in promoting the predicted intensity
differences in the upsampled image given the edge parameters ob-
served at the low-resolution input. This is done while deducing
absolute intensities from an ‘intensity conservation’ constraint that
requires the total intensity in the low and high resolutions to be
the same. This approach is summarized schematically in Figure 1;
given a low-resolution image plus this additional parametric statis-
tical information, sharp edges are retrieved while typical artifacts
associated with upsampling are minimal.

By real-world images, we refer to scenes seen with the naked eye
or more precisely, scenes captured by a photographic device (e.g.
camera). This includes indoor and outdoor photos not enlarged by
any digital means. Also, unless stated otherwise, we discuss only
gray scale images, working with the Y channel of YUV color space.
We later extend the method to handle color images as well.

This paper is organized as follows. In the next section we give a
brief survey of existing work on this topic. In Section 3, we describe
the statistical edge dependency, and in the following section we
use it to construct the new method. In Section 5, we discuss the
results obtained and compare them with results produced by other
methods. Finally, in Section 6, we describe the drawbacks of this
method as revealed by testing and summarize our conclusions.

2 Previous Work

The problem of image upsampling has received much attention both
from the computer graphics and image processing communities. As
a result, many techniques have been suggested in recent years, each
with its own distinctive methodology, prior assumptions, and re-
quirements for additional information. In this section, we discuss
these related techniques by dividing them into groups of common
features. We begin with the classical approach of data invariant lin-
ear filters, which are very popular in commercial software. Among
these filters are the well known Nearest-Neighbor, Bilinear, Bicu-
bic, Hann, Hamming, and Lanczos interpolation kernels. The con-
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struction of these kernels relies strongly on the assumption that the
image data is either spatially smooth or band-limited. As mentioned
earlier, this is not true in general, and consequently these solutions
tend to produce visual artifacts such as ringing, aliasing, blocking,
and blurring. In [Thvenaz et al. 2000], a more detailed survey of
these techniques and their shortcomings is given.

In recent years, more sophisticated methods, where interpolation
weights adapt locally to the image data, have been developed in or-
der to reduce blurriness and other artifacts. In [Carrato et al. 1996],
the parameterization of a linear interpolation is changed according
to local intensity differences allowing for the generation of faster in-
tensity transitions. Despite this method’s ability to produce sharper
edges than linear filtering, the 1D treatment emphasizes vertical and
horizontal edges in nonhomogeneous regions as shown in Figure 6.
Also in [Su and Willis 2004], interpolation weights are adjusted
locally by choosing three out of the four nearest pixels to reduce
the number of variables that are averaged. This choice forms a
noticeable block-like effect, showing strong continuity along one
of the two diagonals. This artifact is avoided in [Li and Orchard
2001], where arbitrary edge orientation is implicitly matched by
estimating local intensity covariance from the low-resolution im-
age. As shown in Figure 6, this method is capable of generating
smooth curves and of reducing jaggies. Yet, since the interpolation
weights are estimated from flat regions as well, edges do not ap-
pear as sharp as they should. Also in [Ratakonda and Ahuja 1998],
selective interpolation is implemented using an iterative Projection
Onto Convex Set (POCS) scheme. Additional theoretical aspects of
the POCS method concerning upsampling can be found in [Calle
and Montanvert 1998].

By storing additional image data, in the form of discontinuity
graphs, averaging pixels across boundaries is avoided in [Tumblin
and Choudhury 2004]. This approach allows images to be enlarged
while keeping boundaries infinitely sharp. Results demonstrate the
effectiveness of this method on images of a strict piece-wise planar
nature, i.e., linear profiles separated by intensity jumps. A solu-
tion of a similar nature is reported in [Ramanarayanan et al. 2004],
focusing on generating high quality texture maps.

Another way to improve the quality of upsampled images by re-
ducing the jaggies is described in [Morse and Schwartzwald 2001].
There, after employing some given interpolation technique, the
curvature of isophotes (curves of constant intensity) is minimized
by an iterative process. In another distinct approach, reported
in [Greenspan et al. 2000], the next higher harmonic of a pyramidal
image representation is extrapolated such that ideal edge transitions
are preserved. The method demonstrates an ability to sharpen im-
ages but suffers from some haloing artifacts due to extrapolation
overshooting.

Resolution enhancement is tackled also under different settings,
whereby several images, differing by some spatial transformation,
are combined to create a higher resolution image. In [Capel and
Zisserman 1998], an automated registration process followed by
resolution enhancement is described.

Resolution enhancement was also suggested as an application of
the Image Analogies paradigm [Hertzmann et al. 2001], and was
later modified in [Freeman et al. 2002], to allow broader applica-
bility. In the latter, an analytically interpolated image is enhanced
by adding high-frequency patches from a non-parametric set of ex-
amples relating low and high resolutions. This approach sharpens
edges and yields images with a detailed appearance. The use, how-
ever, of such a finite non-parametric set of examples tends to intro-
duce some irregularities into the constructed image. A similar so-
lution is derived from a degradation model in [Tappen et al. 2004].

The Total Variation method is used to invert a blurring process in
images [Osher et al. 2003]. In this approach, the degradation is
expressed by a functional which also measures the L1 norm of the

Figure 2: Possible edge profile reconstructions.

output image in order to promote regularity. This approach has been
formulated for image upsampling in [Aly and Dubois 2005].

3 Edge-Frame Continuity Moduli

A sharp edge in an image corresponds to relatively large intensity
gradients concentrated along the edge, while a smooth edge is com-
posed of a more scattered set of weaker gradients. Here we up-
sample an image by constructing its gradient field rather than de-
termining the pixel intensities directly. This allows us to focus on
producing a properly condensed gradient field, where sharp edges
can be constructed while avoiding ringing effects. To follow this
approach we are required to predict the spatial intensity differences
at the high-resolution based on the low-resolution input image.

A smooth intensity transition in the input image may or may not
correspond to a similarly sloped and spatially distributed transition
at the higher resolution. As illustrated in Figure 2, this relation is
not unique and is too complicated to be quantified manually. In
view of that, we resort to statistical measurements and modeling in
an attempt to capture edge dependencies at different resolutions. In
particular, given some local edge-related parameters extracted from
the low-resolution image, such as closeness to an edge and its mag-
nitude and scattering, we estimate the expected local intensity con-
tinuity observed at the high resolution. This relation, if found to be
non-trivial with respect to these quantities, will provide a meaning-
ful criterion for a ‘correct’ edge construction in the new upsampled
image.

In the reminder of this section, we describe both the features which
we base our predictions on, and the quantities we aim to predict at
the higher resolution. Given an image I, we simulate its downsam-
pling by means of filtering with a kernel kd , and evenly decimating
it. In order to perform the analysis at I’s resolution, we upsample
the decimated image by filtering with another kernel ku to get Ĩ.
Before we describe the features we extract from Ĩ, we define a few
useful functions. The spatial derivatives and the gradient norm are
evaluated at every pixel x = (x,y) as following

Ĩx(x) = Ĩ(x+1,y)− Ĩ(x−1,y),

Ĩy(x) = Ĩ(x,y+1)− Ĩ(x,y−1),

and N(x) = ‖∇Ĩ‖2, where ∇Ĩ = (Ĩx(x), Ĩy(x)).

The ray in the gradient direction is parameterized at each pixel by

ϕx(t) = x+ t ·∇Ĩ(x)/N(x).

The features we extract at each pixel x describe the shape of the
nearest edges passing by x. These quantities are computed from the
gradient norm N along ϕx(t) when t ∈ [t1, t2]. This interval delimits
the ridge in N which is closest to x(t = 0) as shown in Figure 3, and
is determined as follows. First, we find the point of local maxima t∗

of N along ϕx which is closest to t = 0. The points t1 and t2 are then
taken to be the points where ϕx ceases to decrease as we move away
from t∗. As will be discussed later, the edge’s statistical dependency
is measured only between two resolutions differing by a factor of 2.
Consequently, this search can be performed only within the limits
of |t| ≤ 5 (pixels).

Finally we are ready to define the edge features that we extract from
the low-resolution image,
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Figure 3: Illustration of d,m,s on top of N(x), showing the segment

passing through x along ∇Ĩ(x) passing through the edge’s peak at t0.
On the left, a cross-section of the edge along this segment shows the
distribution around its center and the total intensity change across
it.

1. The total change in intensity across the nearest edge m(x) is
estimated from N along ϕx as follows

m(x) =
∫ t2

t1

N
(

ϕx(t)
)

dt.

2. The distance from the closest edge d(x) is determined by the
distance along ϕx(t) between t = 0 and the center of mass t0
of the closest ridge in N to x, given by

t0 =
∫ t2

t1

t ·N
(

ϕx(t)
)

dt/m(x),

and d(x) = |t0|. We also store r(x) = sign(t0) which indicates
on which side of x (along ϕx) the edge passes.

3. The closest edge’s spatial scattering s(x) is measured by

s(x) =
∫ t2

t1

(t − t0)
2 ·N

(

ϕx(t)
)

dt/m(x).

Note that these features correspond to the first three moments of the
edge’s cross-section as illustrated in Figure 3. We use discrete sums
to approximate the integrals above.

Now, for each possible configuration of d,m,s we estimate the con-
ditional expectation of the pixel differences, the local continuity
moduli, at the high-resolution image I. We do this in a local frame
defined by the orientation of the edge ∇Ĩ/N. This allows us to
gather dependencies which are more intrinsic to the edge (and will
be shown to be significant later). This is computed using the fol-
lowing local transformation matrix

F
(

∇Ĩ(x)
)

= ‖∇Ĩ(x)‖−1

(

r(x) · Ĩx(x) −Ĩy(x)
r(x) · Ĩy(x) Ĩx(x)

)

.

Note that r serves to mirror the frame so that the edge will always
be on the same side in the transformed coordinates, adding this ad-
ditional sensitivity to the statistics. Finally we are ready to define
the continuity measure between pixel x and its neighbor, x+u, by

C (x,u) = I(x)− I(x+F
(

∇Ĩ(x)
)

·u),

where u = (u,v) is an integer vector parameterizing a small window
around 0. Under the assumption of invariance to translation and
rotation, implying that there is no dependency on particular pixel
position or edge orientation, we define the edge-frame continuity
modulus (EFCM) as the conditional mean and variance of C

µ(u |d,m,s) = E
[

C (x,u) | d,m,s
]

,

σ2(u |d,m,s) = E
[(

C (x,u)−µ(u |d,m,s)
)2

| d,m,s
]

.

Figure 4 shows σ2(u |d,m,s) estimated from fifteen indoor images
of one mega pixels each. From these measurements a clear depen-
dency is revealed between d,m,s and the continuity moduli exhib-
ited by the image intensities. The continuity profiles are consistent

Figure 4: Displays a 5D graph spread in 2D: 5-by-5 windows of

σ2(u |d,m,s) as a function of u = (u,v) are shown against d,m,s.
The edge scattering s increases along the vertical axis, while the
distance from the edge d increases along the short horizontal axis.
At every fourth window along this axis, the total intensity change
across the edge m increases.

with the fact that edges pass nearby, as expected due to the image
derivatives’ spatial dependency, discussed in [Huang and Mumford
1999]. Moreover, as the intensity diminishes and scattering grows,
the eccentricity of this profile is reduced. These measures merely
quantify the anticipated local relations, allowing us to make use of
them later on. The non-isotropy and non-symmetry of these graphs
confirms the necessity of analyzing this relation in the local edge-
frame. As stated earlier, this choice of the features d,m,s charac-
terizes the profile of the edge cross-section. Given these features,
statistics are gathered and represent a true image behavior. There-
fore, the choice of these features must be judged by the their effect
over the statistics and indeed Figure 4 confirms that the expected
quantities are influenced greatly by conditioning with respect to
these features.

Much work has been devoted in [Schaaf 1998], [Huang and Mum-
ford 1999] and [Reinhard et al. 2004], to estimating different sta-
tistical properties of images, focusing mainly on the particular fam-
ily of natural images. In these measurements, much efforts have
been invested in calibrating the acquisition process so that camera-
specific biases, such as nonlinear intensity transfer and particular
spatial response profiles, are eliminated. Although we introduce
here image statistical measurements, the aim of this work does not
require them to be purely evaluated. The upsampled image need
not possess any scene-intrinsic behavior; on the contrary, users ex-
pect this kind of bias to remain when enlarging an image. Also,
the upsampling method we’re about to describe is not restricted to
any particular table of EFCM. Thus, such measurements can be per-
formed in any suitable way.

The assumptions of spatial and rotational invariance allow us to ob-

tain reasonable estimates of µ and σ2 from small collections of
images. Certain groups of images may show systematic statisti-
cal dependencies on different regions (such as land and sky), or
specific edge orientations. Accounting for such dependencies does
not introduce any principal complication to the algorithm described
next, but would naturally increase the number of images needed for
achieving proper statistical estimates.

4 Upsampling using the EFCM

In this section we derive a scheme for upsampling images which re-
lies on the prior knowledge stored in the EFCM tables. Given a low-
resolution image L, we compute its upsampled version Ĩ using filter
ku (Bicubic interpolation in our implementation) in accord with the
discussion of the previous section. From this temporary image, we
extract the edge-related features r,d,m and s. In order to impose
specific EFCM characteristics on I, we have to model the statisti-
cal behavior of the random variable C . The samples’ histogram of
C taken from our indoor set of images bears a strong resemblance
to the Normal Distribution once conditioned (on d,m,s), as shown
in Figure 5. This, together with practical computational consider-
ations, given the number of unknowns in I, leads us to model this
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Figure 5: The left graph shows C (x,u) samples’ histogram, H,

corresponding to a particular choice of u and d,m,s.
√

− log(H) is
plotted on the right.

distribution by the Normal distribution, characterized by µ and σ2,

C (x,u) ∼ N
(

µ(u |d,m,s),σ2(u |d,m,s)
)

,

for a given offset u and parameters d,m and s. This modeling of
the EFCM gives rise to a Gauss-Markov Random Field model, re-
viewed in [Prez 1998], over the upsampled image space. In these
terms, assuming a continuous state space for the pixel intensities
and taking images as configurations, we get the following Gibbs
distribution

P(I) =
1

Z
∏

x

exp
(

−Vx(I)
)

,

with the interaction potentials,

Vx(I) = ∑
u

(

C (x,u)−µ(u |d(x),m(x),s(x))
)2

σ2(u |d(x),m(x),s(x))
,

and Z is the appropriate partition function. The Markov property is
evident from the limited number of pixels coupling in each of the
interaction potentials. Small windows of 3-by-3 pixels involve 8
interactions similarly to a spatially varying Laplacian matrix. The
resulting distribution P(I) predicts the likelihood of I in terms of
predicted edges behavior. Another piece of information we can use
in order to reduce the space of permissable Is are the input image in-
tensity values. This can be achieved rather naturally by introducing
an intensity conservation law stating that the result by downsam-
pling I to the input image resolution must be identical to the input
image L itself. Formally, this constraint can be expressed by the
following linear equation, D · I = L. Assuming that I is comprised
of n pixels and L of m pixels, then D is a n-by-m decimation ma-
trix whose rows are simply the downsampling kernels kd (we used
equal averages in our implementation). Thus, the upsampled image
I is obtained as the solution of

max
I

log
(

P(I)
)

s.t. D · I = L.

A similar condition was formulated in [Tappen et al. 2004] as a
compatibility function which is later minimized along with another
spatially-invariant regularity condition. In our formulation, this
requirement is an analytical constraint, which narrows the search
space. This form of constrained optimization problem can be solved
using the method of Lagrange Multipliers which requires the solu-
tion of the following set of equations,

d log(P)

dI
= D

⊤λ s.t. D · I = L.

This is an indefinite system of linear equations known as a saddle
point problem [Benzi et al. 2005]. The solver used in our imple-
mentation is equivalent to a basic Conjugate Gradient-based Null
Space method as described in [Press et al. 1993] and [Benzi et al.
2005]. Also, this system is poorly conditioned due to weak inter-
actions across edges and strong ones in flat regions. Nevertheless,
simple division by the diagonal element proved to be very a effec-
tive preconditioning.

Figure 6: Top to bottom, left to right are: reference image, its down-
sampling by 4 (test’s input pixels). Second row, Bicubic interp. and
the image produced by our method. Bottom row shows the Simple
Edge Sensitive and New Edge-Directed intep. results.

Color Images. The method described so far deals with gray
scale images only. We apply this algorithm for color images us-
ing the assumption that color and luminance are locally related by
some simple transformation. Affine transformations have been used
in [Zomet and Peleg 2002] and [Levin et al. 2004]. We take a simi-
lar approach. First we upsample the luminance channel of the YUV
color space. Next, for each upsampled pixel in the resulting image
we compute the absolute value of its luminance difference from its
four closest pixels in the low-resolution image, denoted by d1,d2,d3

and d4. Normalized weights are then computed by wi = d−α
i /w,

where i = 1...4, w = ∑d−α
i , and α is a positive number controlling

the penalty for different in luminance. The color channels of the
four neighboring pixels are linearly combined using wi, to give the
color channels of the upsampled pixel. This performs sufficiently
well for images which do not contain strong changes in color unac-
companied by a change in luminance.

5 Results

In order to magnify images by a factor greater than two (along
each axis), we perform the following procedure. We begin by us-
ing the input image as the low-resolution reference, from which
we extract edge features. Later, for further magnification, we use
the output image as the low-resolution input. All along, the con-
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Figure 7: Color images magnified by a factor of 4.

strained subspace is defined by the original low-resolution input
image. In Figure 6, by way of comparison, the same image is mag-
nified by a factor of 4 using Bicubic interpolation, our method, the
Simple Edge Sensitive [Carrato et al. 1996], and the New Edge-
Directed [Li and Orchard 2001] interpolations. The main edges
produced by our method are sharper and closer to the original (ref-
erence) image than the ones generated by the other methods. In
Figure 8 we compare our method with the Example-Based Super-
Resolution method [Freeman et al. 2002]. This comparison shows
the new method’s ability to generate sharper edges while produc-
ing less noise and false edge irregularities than the Example-Based
Super-Resolution method. On the other hand, the images produced
by the latter method appear to be somewhat more detailed. A pref-
erence between the two techniques may depend on the specific im-
age and subjective concerns.

In Figure 7, we show color images magnified by a factor of 4, and
the original input pixels. The results show that sharp edges are re-
constructed and that color is successfully matched. At twice that
magnification factor, as shown in Figure 9, resulting images con-

Figure 8: Top to bottom, left to right are: child’s face upsampled by
a factor of 4 using the Example-Based Super-Resolution, and using
our method. Bottom row shows pixels of a teapot, their magnifi-
cation by a factor of 8 using the Example-Based Super-Resolution,
and the result of our method. Both the teapot original image and
the images generated by the Examples-Based Super-Resolution are
courtesy of William T. Freeman.

tinue to show sharpness. It appears that edges separated by one
pixel show some jaggies. The chip connectors’ shaded side, cap-
tured roughly by one pixel in the input, show some staircasing,
while the image of the old man’s face demonstrates the method’s
ability to construct edges of different scales. Cartoon images make
good candidates for such operations because of their inherent lack
of texture. The dog’s outlines remain sharp, and the new image ap-
pears almost as it does at its native resolution. Magnifying higher
than this factor produces less realistic images due to the absence
of texture. Nevertheless, in Figure 10, we’ve magnified images by
a factor of 16, showing that the method manages to produce sharp
edges even at this high magnification factor. In Table 1 we give
objective error measurements between an upsampled image and the
original ground-truth image (i.e., before downsampling). These dif-
ferences are measured by a root mean square error (RMSE) after the
images are normalized to have a zero mean and a unit variance and
also by the Structural Similarity Image Quality (SSIQ) described in
[Wang et al. 2004].

The running times of this method on a Mobile Pentium-M, running
at 2.1MHz and implemented in C++ are as follows: 2 seconds to

upsample an image of 1282 pixels to twice its resolution (2562).
Upsampling four times this resolution takes 6 seconds upsampling

to a resolution of 10242 pixels takes our implementation 22 sec-
onds.

Image Upsampling via Imposed Edge Statistics        •        95-5
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Figure 9: Images magnified by a factor of 8.

6 Conclusions

In this paper we presented a novel method for upsampling im-
ages. Instead of relying on inaccurate assumptions which exclude
the possibly of abrupt transitions, this method is based on actual
edge characteristics. The method demonstrates its ability to re-
trieve sharp edges even when they are poorly sampled in the low-
resolution input. Artifacts, which are typical for such operations,
are quite minimal in relative to the gain in clarity and sharpness of
the resulting images.

The drawbacks of this method, as drawn from its testings, are the
following: (i) the resulting sharp-edged images tend to emphasize
lack of texture and absence of fine-details. (ii) the jaggies arti-
fact, though minimal relative to the gain in sharpness, is sometimes
noticeable in the presence of clear edges produced. (iii) acutely
twisted edges, although scarce, are not captured by the EFCM and
are undetected by conditioning on d,m,s alone. And (iv) the pro-
posed method involves more computations than some of the exist-
ing techniques.

Restricting to a particular type of scenes, when collecting statistics,
may produces more accurate results on images belonging to that
class. Yet, as shown in Figure 12, the difference amounts to a rather
subtle change in overall sharpness. The estimated tables of µ and

σ2 can thus be used with a large degree of universality.

The generic behavior of edges, as captured by the statistics, does

Figure 10: Child’s eye and an armchair images magnified by a fac-
tor of 16.

not accurately describe every particular case. An important feature
that we hold responsible for the successful edge reconstruction is
the coupling along edges. The continuity imposed along the edges
translates to strong interactions that allow neighboring edge profile
‘evidence’ to be propagated and combined along the edge itself.
Indeed, this mechanism is detected in its absence; occasionally, in
the case of long edges perfectly aligned with the grid, found in the
the ring shown in Figure 12, the 2D couplings become trivial in
the sense that the same feature values are found along the edge.
In such cases ‘generic’ edges are constructed, which may lack the
appropriate sharpness.

Upsampling methods that are based on a non-parametric model,
such as [Freeman et al. 2002], may suffer from a shortage of struc-
tures. Edge curves often follow a continuous set of orientations
and do so at various curvatures, some of which may be absent from
the set of examples. Thus the reconstructed contour may become
falsely discontinuous or the edge itself may remain blurry. On the
other hand, example-based techniques have shown more success in
synthesizing textures than parametric approaches, see [Kwatra et al.
2005]. This suggests that a marriage between these methods and the
current one may be a promising direction for further research.

JPEG and MPEG standards also follow certain band assumptions
favoring lower frequencies, and hence exhibit artifacts similar to
their linear interpolation counterparts (blurriness, ringing). As
pointed out in [2002], this analogy suggests that achieving good re-
sults when upsampling images may offer an alternative approach to
image compression. Similarly to [Simoncelli 1997], where statisti-
cal dependency between wavelet coefficients is exploited for com-
pact image coding, more explicit edge dependencies can be used for
the same purpose. For example, one can store a downsampled im-
age, and later decompress it by upsampling. For that matter, JPEG
images or MPEG frames can be taken as the ‘low-resolution’ im-
ages once edge relations similar to the ones used here are estab-
lished. This idea can be further extended to other types of image
restoration scenarios. Finally, higher-order edge properties such as
curvature, if properly extracted, may improve the results in the case
of highly curved edges.

The images appearing in this paper can be downloaded from:

http://www.cs.huji.ac.il/~raananf/projects/upsampling/results.html
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Figure 11: A comparison between two classes of images used for
edge statistics estimation. Left is based on outdoor scenes and the
right on indoor scenes.

norm. RMSE SSIQ
Image Our Bicubic Our Bicubic

foliage1 0.226 0.278 0.946 0.924
foliage2 0.182 0.241 0.893 0.848
foliage3 0.187 0.187 0.908 0.907
foliage4 0.143 0.145 0.950 0.938

norm. RMSE SSIQ
Image Our EBSP GF Our EBSP GF

child 0.129 0.145 0.154 0.903 0.871 0.881

Table 1: EBSR stands for Example-Based Super-Resolution
method and GF for the Genuine Fractals software.
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Figure 13: A comparison between our method, Bicubic interpolation and assorted commercial softwares: Genuine Fractals
(www.ononesoftware.com), FocalBlade (www.thepluginsite.com), PhotoKit (www.pixelgenius.com) and PhotoZoom (www.benvista.com).
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